Abstract

The goal of the objective image quality assessment is to quantitatively measure the image quality of an arbitrary image. The objective image quality measure is desirable if it is close to the subjective image quality assessment such as the mean opinion score. Image quality assessment algorithms are generally classified into two methodologies: perceptual and structural information-based. This paper proposes a structural information-based image quality assessment algorithm, in which LU factorization is used for representation of the structural information of an image. The proposed algorithm performs LU factorization of each of reference and distorted images, from which the distortion map is computed for measuring the quality of the distorted image. Finally, the proposed image quality metric is computed from the two-dimensional distortion map. Experimental results with the laboratory for image and video engineering database images show the efficiency of the proposed method, calibrated by linear and logistic regressions, in terms of the Pearson correlation coefficient and root mean square error. In commercial systems, the proposed algorithm can be used for quality assessment of mobile contents and video coding, which effectively replaces the peak signal to noise ratio or the mean square error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.