Abstract

In a number of recent studies, information about the structure of large polyatomic ions has been deduced from gas phase ion mobility measurements by comparing mobilities measured in helium to those estimated for assumed geometries using a hard sphere projection approximation. To examine the validity of this approach, we have compared mobilities calculated using the hard sphere projection approximation for a range of fullerenes (C20−C240) to those determined from trajectory calculations with a more realistic He−fullerene potential. The He−fullerene potential we have employed, a sum of two-body 6-12 interactions plus a sum of ion-induced dipole interactions, was calibrated using the measured mobility of C60+ in helium over an 80−380 K temperature range. For the systems studied, the long-range interactions between the ion and buffer gas have a small, less than 10%, effect on the calculated mobility at room temperature. However, the effects are not insignificant, and in many cases it will be necessary to consider the long-range interactions if the correct structural assignments are to be made from measured ion mobilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.