Abstract

PurposeThe purpose of this study was to understand the behaviour of cohesive powder mixtures of salbutamol sulphate (SS) and micronized lactose (LH300) at ratios of SS:LH300 of 1:1, 1:2, 1:4 and 1:8 under varying air flow conditions. MethodsAerosolisation of particles less than 5.4μm at air flow rates from 30 to 180lmin−1 was investigated by determining particle size distributions of the aerosolised particles using laser diffraction and fine particle fractions of SS using the twin stage impinger modified for different air flow rates using a Rotahaler®. The de-agglomeration data were best fitted by a 3-parameter sigmoidal equation using non-linear least squares regression and characterised by the estimated parameters. ResultsDe-agglomeration air flow rate profiles showed that SS:LH300 mixtures with increased lactose content (1:4 and 1:8) improved powder aerosolisation, but lactose had negligible effect on SS aerosolisation at the higher and lower limits of air flow rates studied. De-agglomeration flow rate profiles of SS–LH300 mixtures with increased lactose content (1:4 and 1:8) were greater than theoretically expected based on weighted individual SS and LH300 profiles. This indicated that interactions between the cohesive components led to enhanced de-agglomeration. The composition of the aerosol plume changed with air flow rate. ConclusionThis approach to characterising aerosolisation behaviour has significant applications in understanding powder structures and in formulation design for optimal aerosolisation properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.