Abstract

We first survey the historical aspects of the term Stone–Thrower–Wales (STW) defect and its experimental identification. Physicochemical properties associated with the STW defect have been extensively investigated theoretically as well. However, it is difficult to verify the predicted properties by means of experiments. Here we demonstrate an experimental way to probe the vibrational properties of STW defects in single-wall carbon nanotubes (SWCNTs) using surface-enhanced Raman scattering (SERS). We also performed density functional theory calculations to support our interpretation of the SERS spectra. The characteristic fluctuations of peak intensities and frequencies are ascribed to dynamic motion of an STW defect in the hexagonal SWCNT lattice. The role of an STW defect at edges is also discussed in terms of its relevance to the stability and O2 reactivity of flat and curved graphene structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.