Abstract

Large-scale hydrogen production by electrocatalytic water splitting still remains as a critical challenge due to the severe catalyst degradation during the oxygen evolution reaction (OER) in acidic media. In this study, we investigate the structural impacts on catalyst degradation behaviors using three iridium-based oxides, namely SrIrO3, Sr2IrO4, and Sr4IrO6 as model catalysts. These Ir oxides possess different connection configurations of [IrO6] octahedra units in their structure. Stable OER performance is observed on SrIrO3 and attributed to the edge-linked [IrO6] structure and rapid formation of a continuous IrOx layer on its surface, which functions not only as the “real” catalyst but also a shield preventing continuous cation leaching (with <1.0 at.% of Ir leaching). In comparison, both Sr2IrO4 and Sr4IrO6 catalysts demonstrate quick current fading with structure transformation to rutile IrO2 and formation of inconducive SrSO4 precipitates on surface, blocking the reactive sites. Nevertheless, over 60 at.% of Ir leaching is detected from the Sr4IrO6 catalyst due to its isolated [IrO6] structure configuration. Results of this work highlight the structural impacts on the catalyst stability in acidic OER conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.