Abstract

We address the impact of chromium (Cr) incorporation (<15 at.%) in the structure of titanium dioxide (TiO2:Cr) films for as-grown and after flash-lamp-annealing (FLA) states. Samples were produced by DC magnetron sputtering on either unheated or heated (400 °C) substrates. Complementary medium- and local-order information was extracted by X-ray diffraction and absorption near-edge structure, respectively. TiO2:Cr grown on unheated substrates are amorphous with the major contribution from Cr3+ and progressive formation of Cr6+ with Cr. On heated substrates, anatase phase is dominant for low Cr levels (≤7 at.%) and the structure evolves with Cr towards a disordered mixed-oxide with rutile structure. By tuning the FLA energy density, customized (single or mixed) phase formation is achieved from (initially amorphous) Cr-free TiO2. For amorphous TiO2:Cr with low Cr (≤7 at.%), FLA induces a short-range rutile structure but structural ordering is not observed at higher Cr levels. Nonetheless, FLA annihilates Cr6+ sites and promotes Cr4+, which is associated to the mixed-oxide rutile. FLA also improves the pristine structure of anatase TiO2:Cr grown on heated substrates. These results provide relevant information about the atomic structure of mixed oxides and the use of FLA for the synthesis of band-gap engineered TiO2-based materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.