Abstract

Anatomical imaging in OCD using magnetic resonance imaging (MRI) has been performed since the late 1980s. MRI research was further stimulated with the advent of automated image processing techniques such as voxel-based morphometry (VBM) and surface-based methods (e.g., FreeSurfer) which allow for detailed whole-brain data analyses. Early studies suggesting involvement of corticostriatal circuitry (particularly orbitofrontal cortex and ventral striatum) have been complemented by meta-analyses and pooled analyses indicating additional involvement of posterior brain regions, in particular parietal cortex. Recent large-scale meta-analyses from the ENIGMA consortium have revealed greater pallidum and smaller hippocampus volume in adult OCD, coupled with parietal cortical thinning. Frontal cortical thinning was only observed in medicated patients. Previous reports of symptom dimension-specific alterations were not confirmed. In paediatric OCD, thalamus enlargement has been a consistent finding. Studies investigating white matter volume (VBM) or integrity (using diffusion tensor imaging (DTI)) have shown mixed results, with recent DTI meta-analyses mainly showing involvement of posterior cortical-subcortical tracts in addition to subcortical-prefrontal connections. To which extent these abnormalities are unique to OCD or common to other psychiatric disorders is unclear, as few comparative studies have been performed. Overall, neuroanatomical alterations in OCD appear to be subtle and may vary with time, stressing the need for adequately powered longitudinal studies. Although multivariate approaches using machine learning methodologies have so far been disappointing in distinguishing individual OCD patients from healthy controls, including multimodal data in such analyses may aid in further establishing a neurobiological profile of OCD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call