Abstract

The objective of this work was to investigate the use of inverse system identification techniques on Mir/Shuttle docking data to identify Mir vibrational characteristics for ultimate application to damage detection. A time-domain technique called a Remote Sensing System was proposed as an approach. The method uses inverse structural dynamics to identify vibrational characteristics of a structure. The Remote Sensing System method was demonstrated with a numerical simulation of Mir/Shuttle docking assuming that sensors were collocated with the Mir docking location. The method was then applied to the combined set of docking data from Mir/Shuttle missions STS-81, STS-89, and STS-91. Overall, the results produced by this work appear to indicate that Mir was in an undamaged state, at least with respect to docking excitation, at the time of STS-91. The significance of the contribution of the Remote Sensing System approach is that it is not affected by the nonstationarity and nonlinearity associated with the Mir/Shuttle docking interface, and docking forces at the interface do not have to be measured.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call