Abstract

A novel axially chiral binaphthyl fluorene based salen ligand, AFX-155 [2,2'-(1E,1'E)-(R)-1,1'-binaphthyl-2,2'-diylbis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene)bis(4-((7-(diphenylamino)-9,9-dihexyl-9H-fluoren-2-l)ethynyl)phenol)], with potential applications in homogeneous catalysis, biophotonics, and sensing was synthesized. A full comparative theoretical-experimental analysis of the UV-vis and electronic circular dichroism (ECD) spectra of the 10 primary isomers, comprising stereoisomers and optical isomers, revealed the presence of the unique structure in tetrahydrofuran (THF) solution, the trans-R-intra//trans-R-extra. A proposed route of attack of the (R)-(+)-2,2'-diamino-1,1'-binapthalene onto a salicaldehyde 5-(2-(2-(diphenylamino)-9,9-dihexyl-9H-fluoren-7-yl)ethynyl)-2-hydroxybenzaldehyde followed by a consecutive attack of the resulting species onto another salicaldehyde, both via Burgi:Dunitz trajectory, validates the unambiguous formation of the established isomer. Steric hindrances seem to be the determinant factor that defines the 3D structural conformation of this particular stereoisomer of AFX-155 with triple axial chirality. The determination of every optimal structure and the dominant conformers of AFX-155 were calculated evaluating, in CONFLEX, their steric energies using force fields at MMFF94S (2006-11-24HGTEMP) level in gas phase. The geometry of the conformers was optimized in THF (using PCM) using Gaussian 09 at the DFT/B3LYP level of theory and 6-31G* basis set. The first 100 electronic excited states were calculated using the same level of theory and basis set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.