Abstract

Structural analysis of the Manitouwadge greenstone belt, integrated with detailed mapping and geochronological and petrographic studies, reveals a complex early deformation history that significantly modified the primary distribution of base-metal deposits and alteration zones. The (D3) Manitouwadge synform dominates the map pattern; however, penetrative fabric development and establishment of the tectono-stratigraphy of base-metal deposits mostly predated D3. The D1 Garnet Lake fault, which repeats mineralized horizons within a distinctive lithological sequence, is delineated locally by annealed mylonite. D1 planar fabrics are preserved locally in outcrop and thin section. D2 folding accompanied peak regional metamorphism at upper amphibolite facies. The F2 Agam Lake syncline repeats the volcanic sequence across the southern limb of the Manitouwadge synform. A map-scale F2 sheath fold deforms the Garnet Lake fault. Minor D2 structures include prevalent outcrop-scale folds, locally with sheath geometry, the dominant S2 foliation, and mineral lineations (parallel to fold axes). Northwest-southeast-directed D3 shortening produced the Manitouwadge synform and related regional folds without extensive penetrative fabric development. Flexural slip folding is evident in the inner hinge of the synform where rocks of differing competency are interlayered. Higher strain, stronger fabric development, and a component of simple shear were preferentially partitioned to fold limbs. Relative pre-D3 structural geometries in the inner hinge region of the Manitouwadge synform are not significantly complicated by D3 and younger deformation. Retrodeformation of the mineralized sequence shows systematic stratigraphic patterns in iron formation types, stacked massive sulphide orebodies, and alteration types that can be applied to exploration models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.