Abstract
Gelatine gels and gelatine/elastin gels have been prepared to be used in tissue engineered vascular grafts. Optical microscopy and atomic force microscopy (AFM) revealed that the gelatine formed nanofibrils as in soft collagen tissues. The gelatine/elastin gels were nanocomposites with flat elastin nanodomains embedded in the gelatine matrix mimicking the structure of the tunica media in arteries. Gelatine/"hydroxyapatite" (HA) nanocomposites were prepared with the in situ production of "HA" in solution. AFM revealed "HA" solid nanoparticles of about 20 nm size embedded in the gelatine matrix, which formed a hierarchical structure similar to that of the collagen matrix in bone. The application of amagnetic field of 9.4 T resulted in the elongation and orientation of gelatine particles and orientation of gelatine microfibrils in a direction perpendicular to that of the magnetic field. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2008.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Biomedical Materials Research Part B: Applied Biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.