Abstract

Oligodeoxynucleotides designed to form intramolecular triple helices are widely used as model systems in thermodynamic and structural studies. We now report results from UV, Raman and NMR experiments demonstrating that the strand polarity, which also determines the orientation of the connecting loops, has a considerable impact on the formation and stability of pyr x pur x pyr triple helices. There are two types of monomolecular triplexes that can be defined by the location of their purine tract at either the 5'- or 3'-end of the sequence. We have examined four pairs of oligonucleotides with the same base composition but with reversed polarity that can fold into intramolecular triple helices with seven base triplets and two T4 loops under appropriate conditions. UV spectroscopic monitoring of thermal denaturation indicates a consistently higher thermal stability for the 5'-sequences at pH 5.0 in the absence of Mg2+ ions. Raman spectra provide evidence for the formation of triple helices at pH 5 for oligomers with purine tracts located at either the 5'- or 3'-end of the sequence. However, NMR measurements reveal considerable differences in the secondary structures formed by the two types of oligonucleotides. Thus, at acidic pH significant structural heterogeneity is observed for the 3'-sequences. Employing selectively 15N-labeled oligomers, NMR experiments indicate a folding pattern for the competing structures that at least partially changes both Hoogsteen and Watson-Crick base-base interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.