Abstract

Abstract We determined the rupture model of the 2021 Mw 7.1 Fukushima earthquake near northeastern Japan in this study and adopted this model to investigate the cause of this earthquake and its aftershocks. The rupture model was obtained through joint inversion of teleseismic, strong-motion and geodetic data. It is shown that the slips were predominantly distributed on the southwest side of the earthquake epicenter, indicating a unilateral rupture event. We observed that the seismic moment was released in three time periods, producing four slip patches on the fault plane. Through comparison, we demonstrated that our joint inversion model was more reliable in describing the rupture process of the Fukushima earthquake than the automatic inversion models determined using only strong-motion data. By jointly analyzing the slip distribution and seismic velocity structure, we found a good correlation between the slip patches and VP/VS anomalies, suggesting that structural heterogeneities along the fault zone played a critical role in controlling the rupture process of the Fukushima earthquake. In addition, most aftershocks were located in the region characterized by small slips and high VP/VS, and we demonstrated that they were caused by stress changes due to the presence of fluids and the rupture of the mainshock.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.