Abstract

Early detection of damage is of special concern for civil engineering structures. If not identified in time, damage may have serious consequences, both safety related and economic. The traditional methods of damage detection include visual inspection or instrumental evaluation. A comparatively recent development in the health monitoring of civil engineering structures is vibration-based damage detection. Vibration characteristics of a structure, that is, its frequencies, mode shapes, and damping are directly affected by the physical characteristics of the structure including its mass and stiffness. Damage reduces the stiffness of the structure and alters its vibration characteristics and global properties. Therefore, measurement and monitoring of vibration characteristics should theoretically permit the detection of both the location and severity of damage. The advantages and limitations of vibration-based damage detection are discussed in this chapter. A computer simulation study of the identification of damage in a three-dimensional aluminum truss structure is presented and the results obtained from two different algorithms for damage detection are also reviewed as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.