Abstract

A new state-of-the art methodology named as inverse Finite Element Method (iFEM) is adopted to solve the inverse problem of real-time reconstruction of full-field structural displacements, strains, and stresses. iFEM has shown to be precise, robust, and fast enough to reconstruct the three dimensional displacement field of structures in real-time by utilizing surface strain measurements obtained from strain sensors embedded on the structure. The numerical implementation of the iFEM methodology is done by considering four-node inverse quadrilateral shell element. Two demonstration cases are presented including a quadrilateral plate subjected to bending force and a stiffened plate under bending loading. Finally, the effect of sensor locations, number of sensors and the discretization of the geometry are examined on solution accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.