Abstract
In recent years, there are many issues involving safety on old bridges, aircrafts and other structures, which threaten the lives of the people using those structures, as well as the structures themselves. To prevent future failure, various measures are being taken. Structure rehabilitations with carbon fiber reinforced composite patches have been adopted and demonstrated to be an excellent way to enhance/repair the structures and prolong the service life. However, there are still many problems residing in this kind of technology that remain unsolved, for example, the failure of the interface between composite repair patches and their host structures. This is a critical issue that must be addressed in order to show the viability of composite patches. In order to study debond occurring between composite repair patches and their host structures, a structure health monitoring scheme was demonstrated on a concrete bridge model in the laboratory. The system is based on active sensing with diagnostic lamb waves, in which piezoelectric transducers are used as both sensors and actuators. In the test, six SMART Layers, each having eight piezoelectirc transducers, were integrated with two composite repair strips on the deck slab of the concrete bridge model. For the three diagnostic layers with each composite repair patch, two layers were bonded on the top surface of the patch, and the other is embedded at the interface between the composite repair patch and the deck slab of the concrete bridge model. The loading procedure of the test included three phases. First, the bridge model was preloaded to initiate cracks on the deck slabs and the repair patches were then implemented. Second, the load was raised to reach the shear capacity of the girders of the bridge model and then the repair patches were implemented on those girders. Lastly, the structure was loaded to damage the deck slabs. During the test, the initiation and development of debond between composite repair patches and deck slabs were clearly revealed by the active sensing system. It was demonstrated that the active sensing system employed is prompt, robust and a precise technique to monitor the debond process of the composite repair patches for structural rehabilitation. Besides the study of the mechanism of debond between repair patch and host structures, an on line health monitoring system can give the user an indication of the structural health status and alert technicians when it approaches the failure capacity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.