Abstract

In order to monitor the structural conditions, an SHM technology is necessary for long-term aircraft storage tanks under cryogenic conditions. In this paper, a PZT-based Lamb waves SHM technology is developed for such storage tanks. In order to determine the survivability, durability of different PZT-epoxy sensor systems and functionality of the damage diagnosis method under cryogenic conditions of long-term storage tanks, a series of tests have been conducted. First, the durability of PZT-epoxy sensor systems under cryogenic environment was considered by cryogenic durability tests. Simultaneously, performance tests of different PZT-epoxy sensor systems were performed, include high strain performance test and Lamb waves propagation tests under different temperature environments. The high strain performance of different epoxy adhesives under cryogenic environments was investigated by lap shear strength tests. The functionality of different PZT-epoxy sensor systems was investigated by Lamb waves propagation tests. At last, the damage diagnosis ability of the SHM technology was evaluated in a composite damage diagnosis experiment under cryogenic temperature. Experimental results demonstrated that the developed SHM technology can withstand operational levels of high strain and long-term under cryogenic/room temperature on cryogenic storage tanks, and is functional in the cryogenic environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.