Abstract
<p>Structural health diagnosis has been investigated following a data-driven machine learning paradigm. However, the model accuracy and generalization capability highly rely on the quality and diversity of datasets. This study established a framework for structural health diagnosis under limited supervision. Firstly, an image augmentation algorithm of random elastic deformation, a novel neural network with self-attention and subnet modules, and a task-aware few-shot meta learning method were proposed for vision-based damage recognition. Secondly, deep learning networks were established to model intra- and inter-class temporal and probabilistic correlations of different quasi-static responses for condition assessment. Finally, a two-stage convergence criterion merging with the subset simulation and Kriging surrogate model was designed for reliability evaluation. Real-world applications on large-scale infrastructure demonstrated the effectiveness.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.