Abstract

Structural health and Environmental monitoring are recently benefiting from the advancement in the digital industry. Thanks to the emergence of the Internet of Things (IoT) paradigm, monitoring systems are increasing their functionalities and reducing development costs. However, they are affected by a strong fragmentation in the solution proposed and technologies employed. This stale the overall benefits of the adoption of IoT frameworks or IoT devices since it limits the reusability and portability of the chosen platform. As in other IoT contexts, also the structural health and environmental monitoring domain is suffering from the negative effects of, what is called, an interoperability problem. Recently the World Wide Web Consortium (W3C) is joining the race in the definition of a standard for IoT unifying different solutions below a single paradigm. This new shift in the industry is called Web of Things or in short WoT. Together with other W3C technologies of the Semantic Web, the Web of Things unifies different protocols and data models thanks to a descriptive machine-understandable document called the Thing Description. This work wants to explore how this new paradigm can improve the quality of structural health and environmental monitoring applications. The goal is to provide a monitoring infrastructure solely based on WoT and Semantic technologies. The architecture is later tested and applied on two concrete use-cases taken from the industrial structural monitoring and the smart farming domains. Finally, this thesis proposes a layered structure for organizing the knowledge design of the two applications, and it provides evaluation comments on the results obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call