Abstract

The mechanisms by which protein complexes convert from functional to pathogenic are the subject of intensive research. Here, we report how functionally unfavorable protein interactions can be induced by structural fuzziness, i.e., by persisting conformational disorder in protein complexes. We show that extreme disorder in the bound state transforms the intrinsically disordered protein SERF1a from an RNA-organizing factor into a pathogenic enhancer of alpha-synuclein (aSyn) amyloid toxicity. We demonstrate that SERF1a promotes the incorporation of RNA into nucleoli and liquid-like artificial RNA-organelles by retaining an unusually high degree of conformational disorder in the RNA-bound state. However, this type of structural fuzziness also determines an undifferentiated interaction with aSyn. RNA and aSyn both bind to one identical, positively charged site of SERF1a by an analogous electrostatic binding mode, with similar binding affinities, and without any observable disorder-to-order transition. The absence of primary or secondary structure discriminants results in SERF1a being unable to select between nucleic acid and amyloidogenic protein, leading the pro-amyloid aSyn:SERF1a interaction to prevail in the cytosol under conditions of cellular stress. We suggest that fuzzy disorder in SERF1a complexes accounts for an adverse gain-of-interaction which favors toxic binding to aSyn at the expense of nontoxic RNA binding, thereby leading to a functionally distorted and pathogenic process. Thus, structural fuzziness constitutes a direct link between extreme conformational flexibility, amyloid aggregation, and the malfunctioning of RNA-associated cellular processes, three signatures of neurodegenerative proteinopathies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.