Abstract

This paper aims to provide an efficient and straightforward structural form-finding method for designers to extrapolate component forms during the conceptual stage. The core idea is to optimize the classical method of structural form-finding based on principal stress lines by using parametric tools. The traditional operating process of this method relies excessively on the designer's engineering experience and lacks precision. Meanwhile, the current optimization work for this method is overly complicated for architects, and limitations in component type and final result exist. Therefore, to facilitate an architect's conceptual work, the optimization metrics of the method in this paper are set as simplicity, practicality, freedom, and rapid feedback. For that reason, this paper optimizes the method from three aspects: modeling strategy for continuum structures, classification processing of data by using the k-nearest neighbor algorithm, and topological form-finding process based on stress lines. Eventually, it allows architects to create structural texture with formal aesthetics and modify it in real time on the basis of structural analysis results. This paper also explores a comprehensive application strategy with internal force analysis diagramming to form-finding. The finite element analysis tool Karamba3D verifies the structural performance of the form-finding method. The performance is compared with that of the conventional form, and the comparison results show the practicality and potential of the strategy in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call