Abstract
With the increase of the arch bridge span, the mechanical properties of arch bridges will decrease rapidly. In order to solve this problem, triangular net is set between the arch rib and girder to form a kind of truss arch bridge in which arch rib acts as top chord, girder acts as lower chord, triangular net acts as web member, and hangers provide elastic restrains at several points. The triangle stability of the truss can improve linear stiffness of arch rib and girder, which will thus improve the mechanical properties of arch bridges. A test bridge with a span of 50 m was built to prove the superiority of the truss arch bridge with multi-point elastic constraints (MTAB). Structural stresses and displacements were obtained through dead load experiments, and the mechanical properties of the structure were calculated through the finite element (FE) software. It is turned out that, compared with the conventional through arch bridge (CTAB), the mechanical performance of the MTAB is greatly improved. The test values of structural stresses and displacements match calculation values well. Moreover, with the same steel consumption, the more layers of the triangular net, the better the mechanical properties of the structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.