Abstract
Polymorphic differences distinguishing MHC class I subtypes often permit the presentation of shared epitopes in conformationally identical formats but can affect T-cell repertoire selection, differentially impacting autoimmune susceptibilities and viral clearance in vivo. The molecular mechanisms underlying this effect are not well understood. We performed structural, thermodynamic, and functional analyses of a conserved T-cell receptor (TCR) which is frequently expanded in response to a HIV-1 epitope when presented by HLA-B*5701 but is not selected by HLA-B*5703, which differs from HLA-B*5701 by two concealed polymorphisms. Our findings illustrate that although both HLA-B*57 subtypes display the epitope in structurally conserved formats, the impact of their polymorphic differences occurs directly as a consequence of TCR ligation, primarily because of peptide adjustments required for TCR binding, which involves the interplay of polymorphic residues and water molecules. These minor differences culminate in subtype-specific differential TCR-binding kinetics and cellular function. Our data demonstrate a potential mechanism whereby the most subtle MHC class I micropolymorphisms can influence TCR use and highlight their implications for disease outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.