Abstract
AbstractCapillary vapor‐phase chromatography and carbon‐13 nuclear magnetic resonance (NMR) have been used to elucidate the structure of poly(ethylene ether carbonate) diols and certain intermediates produced by the oligomerization of ethylene carbonate (EC) using monoethylene glycol (MEG) or diethylene glycol (DEG) as initiator and catalyzed by sodium stannate trihydrate. These diols are alternating copolymers of carbon dioxide and DEG which also contain smaller amounts of higher glycols as determined by comparing their 13C NMR spectra to the spectra of model compounds. Diethylene glycol is an important reaction intermediate and is present in steady‐state concentrations. Although both 2‐hydroxyethyl carbonate and 2‐hydroxyethyl ether end groups are present at an intermediate stage in the reaction, only 2‐hydroxyethyl ether end groups are present at high EC conversion. Molecular weight builds as a smooth function of conversion and time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.