Abstract

Promoter regions play a key role in the process of transcription initiation and gene expression, hence promoter identification is an inherent component of the genome annotation process. Identification and characterization of promoters in fully sequenced genomes is a challenging and complex task. An analysis of sequence-dependent DNA structural properties in the promoter region of orthologous and non-orthologous genes can help in characterizing promoters and also provide insights into transcription initiation. Various structural properties, such as duplex stability, protein-induced bendability and intrinsic curvature of promoter sequences have been calculated and compared for 10 different strains of Helicobacter pylori genomes, and it is found that promoter regions in orthologous and non-orthologous genes show distinct trends for these properties, with orthologous genes showing sharper low-stability peak, lower bendability and higher curvature. The average GC content of orthologous genes is higher than that of non-orthologous genes, and relative stability-based promoter annotation tool PromPredict performs better for orthologous genes than non-orthologous genes. The characteristic sequence-dependent structural properties of promoters show significant differences between orthologous and non-orthologous genes. Interestingly, these structural properties of promoters are conserved, but the genes themselves vary in their evolutionary selection rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call