Abstract

The antimicrobial peptide distinctin consists of two peptide chains linked by a disulfide bridge; it presents a peculiar fold in water resulting from noncovalent dimerization of two heterodimeric molecules. To investigate the contribution of each peptide chain and the S-S bond to distinctin biochemical properties, different monomeric and homodimeric peptide analogues were synthesized and comparatively evaluated with respect to the native molecule. Our experiments demonstrate that the simultaneous occurrence of both peptide chains and the disulfide bond is essential for the formation of the quaternary structure of distinctin in aqueous media, able to resist protease action. In contrast, distinctin and monomeric and homodimeric analogues exhibited comparable antimicrobial activities, suggesting only a partial contribution of the S-S bond to peptide killing effectiveness. Relative bactericidal properties paralleled liposome permeabilization results, definitively demonstrating that microbial membranes are the main target of distinctin activity. Various biophysical experiments performed in membrane-mimicking media, before and after peptide addition, provided information about peptide secondary structure, lipid bilayer organization, and lipid-peptide orientation with respect to membrane surface. These data were instrumental in the generation of putative models of peptide-lipid supramolecular pore complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.