Abstract

Crystal structures of cold-adapted β-d-galactosidase (EC 3.2.1.23) from the Antarctic bacterium Arthrobacter sp. 32cB (ArthβDG) have been determined in an unliganded form resulting from diffraction experiments conducted at 100 K (at resolution 1.8 Å) and at room temperature (at resolution 3.0 Å). A detailed comparison of those two structures of the same enzyme was performed in order to estimate differences in their molecular flexibility and rigidity and to study structural rationalization for the cold-adaptation of the investigated enzyme. Furthermore, a comparative analysis with structures of homologous enzymes from psychrophilic, mesophilic, and thermophilic sources has been discussed to elucidate the relationship between structure and cold-adaptation in a wider context. The performed studies confirm that the structure of cold-adapted ArthβDG maintains balance between molecular stability and structural flexibility, which can be observed independently on the temperature of conducted X-ray diffraction experiments. Obtained information about proper protein function under given conditions provide a guideline for rational engineering of proteins in terms of their temperature optimum and thermal stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.