Abstract
BackgroundPhenolic compounds are widely distributed in plant kingdom and constitute one of the most important classes of natural and synthetic antioxidants. In the present study fifty one natural and synthetic structurally variant phenolic, enolic and anilinic compounds were examined as antioxidants and radical scavengers against DPPH, hydroxyl and peroxyl radicals. The structural diversity of the used phenolic compounds includes monophenols with substituents frequently present in natural phenols e.g. alkyl, alkoxy, ester and carboxyl groups, besides many other electron donating and withdrawing groups, in addition to polyphenols with 1–3 hydroxyl groups and aminophenols. Some common groups e.g. alkyl, carboxyl, amino and second OH groups were incorporated in ortho, meta and para positions.ResultsSAR study indicates that the most important structural feature of phenolic compounds required to possess good antiradical and antioxidant activities is the presence of a second hydroxyl or an amino group in o- or p-position because of their strong electron donating effect in these positions and the formation of a stable quinone-like products upon two hydrogen-atom transfer process; otherwise, the presence of a number of alkoxy (in o or p-position) and /or alkyl groups (in o, m or p-position) should be present to stabilize the resulted phenoxyl radical and reach good activity. Anilines showed also similar structural feature requirements as phenols to achieve good activities, except o-diamines which gave low activity because of the high energy of the resulted 1,2-dimine product upon the 2H-transfer process. Enols with ene-1,2-diol structure undergo the same process and give good activity. Good correlations were obtained between DPPH inhibition and inhibition of both OH and peroxyl radicals. In addition, good correlations were obtained between DPPH inhibition and antioxidant activities in sunflower oil and liver homogenate systems.ConclusionsIn conclusion, the structures of good anti radical and antioxidant phenols and anilines are defined. The obtained good correlations imply that measuring anti DPPH activity can be used as a simple predictive test for the anti hydroxyl and peroxyl radical, and antioxidant activities. Kinetic measurements showed that strong antioxidants with high activity have also high reaction rates indicating that factors stabilizing the phenoxyl radicals lower also the activation energy of the hydrogen transfer process.
Highlights
Phenolic compounds are widely distributed in plant kingdom and constitute one of the most important classes of natural and synthetic antioxidants
% Hydroxyl radical scavenging activity Hydroxyl radical scavenging activity of the examined compounds was measured based on the method of Halliwell, Gutteridge, & Arouma [21], with a slight modification according to Jiang, Bank, & Scholes [22]
(4) Anilines gave the same trends as phenols; some of the preliminary aniline antioxidant activity results were previously reported [41]. pPhenylenediamine, as might be expected, gave high activity (90.1%) as a result of electron donating effect of the amino group and the possible two hydrogen-atom transfer process leading to the formation of 1,4-diimine; o-phenylenediamine gave low activity (5.1%) which could be attributed to the strain energy manifested by the relatively high heat of formation of the 1,2-diimine (ΔHF = 119.47 Kcal/mole) formed from the o-isomer compared to that of 1,4-diimine (ΔHF = 73.41 Kcal/mole) resulted from the p-isomer as deduced by MOPAC calculations
Summary
SAR study indicates that the most important structural feature of phenolic compounds required to possess good antiradical and antioxidant activities is the presence of a second hydroxyl or an amino group in o- or p-position because of their strong electron donating effect in these positions and the formation of a stable quinone-like products upon two hydrogen-atom transfer process; otherwise, the presence of a number of alkoxy (in o or p-position) and /or alkyl groups (in o, m or p-position) should be present to stabilize the resulted phenoxyl radical and reach good activity. Anilines showed similar structural feature requirements as phenols to achieve good activities, except o-diamines which gave low activity because of the high energy of the resulted 1,2-dimine product upon the 2H-transfer process. Good correlations were obtained between DPPH inhibition and antioxidant activities in sunflower oil and liver homogenate systems
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.