Abstract

ABSTRACT This study presents a novel method for damage detection and identification in unmanned aerial vehicles (UAVs) using vibration data gathering and processing technologies based on deep learning. To conduct the study, a quad-rotor UAV was manufactured, and a vibration data acquisition system was developed to collect vibration data along three axes under normal and three damage scenarios. Empirical mode decomposition (EMD) was employed to reduce high-frequency noise in the signals, and the root mean square error (RMSE) feature was utilised to select the Y-axis acceleration data, which exhibits significant changes across different damage cases. Finally, a convolutional neural network was used to identify the damage based on the vibration data. Experimental results demonstrate that the proposed method achieved 97.5% accuracy using selected and noise-reduced Y-axis acceleration data, thereby indicating its usefulness in diagnosing damage types in multi-rotor UAVs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.