Abstract
Structural features responsible for lithium conductivity in Li(1+x)Ti(2-x)Al(x)(PO4)3 (x = 0, 0.2, and 0.4) samples have been investigated by Rietveld analysis of high-resolution neutron diffraction (ND) patterns. From structural analysis, variation of the Li site occupancies and atomic thermal factors have been deduced as a function of aluminum doping in the temperature range 100-500 K. Fourier map differences deduced from ND patterns revealed that Li ions occupy M1 sites and, to a lower extent, M3 sites, disposed around ternary axes. The occupation of M1 sites by Li ions is responsible for the preferential expansion of the rhombohedral R3c unit cell along the c axis with temperature. The occupation of less symmetric M3 sites decreases electrostatic repulsions among Li cations, favoring ion conductivity in Li(1+x)Ti(2-x)Al(x)(PO4)3 compounds. The variations detected on long-range lithium motions have been related to variations of the oxygen thermal factors with temperature. The information deduced by ND explains two lithium motion regimes deduced previously by (7)Li NMR and impedance spectroscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.