Abstract

Explosives, a type of energetic material (EM), face a high-pressure environment in the detonation process or under shock conditions. Determining their high-pressure behavior is critical to their explosion and safety. 1-Methyl-3,4,5-trinitropyrazole (MTNP), a carrier of melt-cast explosives, exhibits the potential for replacing trinitrotoluene (TNT). However, there is limited knowledge about its structural evolvement at high pressure. Using a diamond anvil cell (DAC), this study investigated the structural variation of MTNP through in situ high-pressure synchrotron angle-dispersive X-ray diffraction (ADXRD) experiments and Raman measurements. As evidenced by the results, MTNP underwent phase transition at 8.7 GPa and amorphization at 15.3 GPa due to high pressure. Through the analysis of first-principles calculations and Raman spectra, this study proposed the mechanisms behind the changes in MTNP at high pressure. Furthermore, this study systematically explored the structural evolvement of MTNP and the evolution of its weak intermolecular interactions at high pressure, gaining further understanding of MTNP's detonation and safety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.