Abstract

All the flaviviruses have a Y-shaped stem-loop secondary structure known as the SLA element, and the structural features of this element are crucial to initiating the infection cycle. The present study particularly investigated how flaviviruses retained the common core SLA element secondary structure during the species evolution by selecting mosquito-borne flaviviruses (MBFVs) as a case study. The detailed search of nucleotide substitutions in species-wise consensus SLA secondary structure models suggested that the compensatory and hemi-compensatory base changes in the helices are crucial to preserving the common core secondary structure. In contrast to the coding region-based phylogeny, the SLA sequence-structure-based phylogenetic tree revealed an intriguing evolutionary relationship among MBFVs. Overall, this paper demonstrated for the first time the efficacy of RNA secondary structures as a phylogenetic marker to study the RNA virus evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call