Abstract

Guerbet alcohols, a class of β-branched terminal alcohols, find widespread application because of their low melting points and excellent fluidity. Because of the limitations in the activity and selectivity of existing Guerbet catalysts, Guerbet alcohols are not currently produced via the Guerbet reaction but via hydroformylation of oil-derived alkenes followed by aldol condensation. In pursuit of a one-step synthesis of Guerbet alcohols from simple linear alcohol precursors, we show that MOF-derived RuCo alloys achieve over a million turnovers in the Guerbet reaction of 1-propanol, 1-butanol, and 1-pentanol. The active catalyst is formed in situ from ruthenium-impregnated metal-organic framework MFU-1. XPS and XAS studies indicate that the precatalyst is composed of Ru precursor trapped inside the MOF pores with no change in the oxidation state or coordination environment of Ru upon MOF incorporation. The significantly higher reactivity of Ru-impregnated MOF versus a physical mixture of Ru precursor and MOF suggests that the MOF plays an important role in templating the formation of the active catalyst and/or its stabilization. XPS reveals partial reduction of both ruthenium and MOF-derived cobalt under the Guerbet reaction conditions, and TEM/EDX imaging shows that Ru is decorated on the edges of dense nanoparticles, as well as thin nanoplates of CoOx. The use of ethanol rather than higher alcohols as a substrate results in lower turnover frequencies, and RuCo recovered from ethanol upgrading lacks nanostructures with plate-like morphology and does not exhibit Ru-enrichment on the surface and edge sites. Notably, 1H and 31P NMR studies show that through use of K3PO4 as a base promoter in the RuCo-catalyzed alcohol upgrading, the formation of carboxylate salts, a common side product in the Guerbet reaction, was effectively eliminated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.