Abstract

In the southern Apennines, Mesozoic carbonates are characterized by the superimposition of different brittle deformation structures formed during different phases of rifting, orogenic shortening and post-orogenic extension. In the western Matese area, fault zones developed in the Triassic dolostones commonly exhibit the complex juxtaposition of different fault rocks, wide damage zones and pulverized dolomite rocks. Significantly, pulverization causes a drastic change in the petrophysical behavior of deformed rock masses through dynamic shattering. For these reasons, a better description of the processes that steer the “dolomite flour” spatial distribution through fault zones represents a fundamental aspect of the mechanical stratigraphy assessment related to subsurface infrastructure building and of the fault zone hydraulic behavior.In this work, we present a multi-scalar and multi-methodological approach to provide a possible structural evolutionary scenario for the Matese Triassic dolostones. We analyzed fault zones outcropping along the eastern side of the Telese plain in the Ailano and Alife area. The fault zones consist of mature damage zones where pulverized rocks occur in patches of variable size (10s 100s of meters) immediately adjacent to the fault core. The fault zones show complex arrays of slip surfaces, including a major N-S normal fault crosscut and reactivated by NE-SW and NW-SE strike-slip faults. Extensive powder bodies are heterogeneously distributed within the damage zone and adjacent to the fault cores of both systems of faults. Fault zone architecture is associated with different brittle structural facies: i) cataclastic to ultra-cataclastic facies; ii) wide volumes of pulverized “dolomite flour”; iii) foliated cataclasite; iv) cataclastic shear bends; v) hydrothermalized dolomite; vi) unstrained lithons.Fault analysis suggests that the N-S normal fault systems accommodated extension during the Mesozoic passive margin extensional phases. The NE-SW and NW-SE strike-slip fault systems developed in a successive phase of orogenic shortening. The shortening-related strike-slip faults propagation overprint the inherited Mesozoic fault zone through extensive pulverization processes of dolostones with the formation of a wide volume of “dolomite flour”.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.