Abstract

The interest in the late transition metal catalyst based design of new architectures of polyethylene (PE) has continuously been increasing over the last few years. The structure of these catalysts is predominantly important in controlling the morphological and architectural properties of the resulting polyethylene. Particularly, iminopyridine is a versatile bidentate support for Ni and Pd catalysts in ethylene (oligo)polymerization providing a wide variety of products ranging from volatile oligomers to ultra-high molecular weight polyethylene. Extensive structural modifications have been induced in the iminopyridine ligand through steric and electronic substitution, tuning the catalyst behavior in terms of activity and properties of the resulting polymer. Carbocyclic-fused iminopyridine and N-oxide iminopyridine are the new state of the art iminopyridine ligand designs. In this review, we aim to summarize all the developments in mononuclear iminopyridine-nickel and -palladium catalysts for ethylene (oligo)polymerization since the first report published in 1999 to present, focusing on the correlation among the pre-catalyst, co-catalyst type, thermal stability and polymer/oligomer structure. For comparison, the structural variations in the binuclear iminopyridine-nickel catalysts are also described. The detailed comparison of the structural variations in these catalysts with respect to their polymerization performance will give deep understanding in the development of new efficient catalyst designs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.