Abstract
CdSSe alloy and CdS/CdSe core/shell quantum dots (QDs) are widely studied in quantum dot solar cells (QDSSCs). However, to date, there have been no detailed comparative investigations into the cell performance between CdSSe alloy and CdS/CdSe core/shell structures prepared with the same preparation process. In this work, the performances of CdSSe alloy and CdS/CdSe core/shell QDSSCs, which are prepared with the same SILAR (successive ionic layer adsorption and reactions) process, are investigated in detail. By simply tuning the layer numbers and arrangement sequence of the CdS and CdSe layers, a series of QDs, including CdSSe alloy structures, CdS/CdSe multilayer structures, and CdS/CdSe core/shell structures, are successfully prepared with a layer-by-layer technique, while maintaining a similar morphology. Based on these QD sensitized TiO2 photoanodes, QDSSCs are assembled. The CdS/CdSe core/shell QDSSCs yield a maximum power conversion efficiency of 5.08% under AM 1.5 illumination of 100 mW cm-2, which is increased by 77% in comparison with that of CdSSe alloy QDSSCs (2.87%). The significantly enhanced photovoltaic performance of QDSSCs with core/shell architectures is mainly attributed to their high short-circuit current density, which arises from the enhanced absorption intensity. In addition, the CdS/CdSe core-shell contributes to the attenuation of the interfacial charge recombination rate and prolongs the electron lifetime, resulting in more efficient charge collection in QDSSCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.