Abstract

The effects of thermal treatment on the Cansas-Ⅲ SiC fibers were investigated via heating at temperatures from 900 to 1700 ℃ for 1–5 h in argon atmosphere. The composition and morphology of the SiC fibers were characterized and the tensile strength of the SiC fiber bundles was analyzed via two-parameter Weibull distribution analysis. The results showed that the thermal treatment has negligible influence on the microstructure of the SiC fibers at temperatures ≤ 1100 ℃. At temperatures ≥ 1300 ℃, the surface of the fibers became rough with some visible particles. Particularly, at 1700 °C, numbers of holes appeared. With the increasing of heating temperature and holding time, the average tensile strength of the SiC fibers decreased gradually from 1.81 to 1.01 GPa. The decreasing of tensile strength can be attributed to the increase of critical defect sizes, grain growth and phase transformation (β→α) of SiC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call