Abstract

The magnesium-lanthanum-hydrogen systems possess the goodish stability and high hydrogen storage capacity, which make them perspective as commercial Mg-based hydrogen storage materials. The exploration of these intriguing properties evolving from small atomic and molecule cluster to bulk phase are, to our knowledge, the longstanding challenge. Here, we perform a theoretical study on the structural and electronic properties of Mg3LaHn (9 ≤ n ≤ 20) clusters by using the Crystal Structure AnaLYsis by Particle Swarm Optimization method combined with density functional theory calculations. It is found that Mg3LaH15 is the most stable cluster in the series, with hydrogen storage capacity of 6.6 wt% and adsorption energy of 2.76 eV. The present results offer new insights for the design and synthesis of novel hydrogen storage materials in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.