Abstract

A theoretical research of structural evolution, electronic properties, and photoelectron spectra of selenium-doped boron clusters SeBn0/- (n = 3-16) is performed using particle swarm optimization (CALYPSO) software in combination with density functional theory calculations. The lowest energy structures of SeBn0/- (n = 3-16) clusters tend to form quasi-planar or planar structures. Some selenium-doped boron clusters keep a skeleton of the corresponding pure boron clusters; however, the addition of a Se atom modified and improved some of the pure boron cluster structures. In particular, the Se atoms of SeB7-, SeB8-, SeB10-, and SeB12- are connected to the pure quasi-planar B7-, B8-, B10-, and B12- clusters, which leads to planar SeB7-, SeB8-, SeB10-, and SeB12-, respectively. Interestingly, the lowest energy structure of SeB9- is a three-dimensional mushroom-shaped structure, and the SeB9- cluster displays the largest HOMO-LUMO gap of 5.08 eV, which shows the superior chemical stability. Adaptive natural density partitioning (AdNDP) bonding analysis reveals that SeB8 is doubly aromatic, with 6 delocalized π electrons and 6 delocalized σ electrons, whereas SeB9- is doubly antiaromatic, with 4 delocalized π electrons and 12 delocalized σ electrons. Similarly, quasi-planar SeB12 is doubly aromatic, with 6 delocalized π electrons and 14 delocalized σ electrons. The electron localization function (ELF) analysis shows that SeBn0/- (n = 3-16) clusters have different local electron delocalization and whole electron delocalization effects. The simulated photoelectron spectra of SeBn- (n = 3-16) have different characteristic bands that can identify and confirm SeBn- (n = 3-16) combined with future experimental photoelectron spectra. Our research enriches the geometrical structures of small doped boron clusters and can offer insight for boron-based nanomaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.