Abstract
This study investigated the microstructure evolution and defects of the titanium oxide layer containing calcium (Ca) and phosphorus (P) formed by anodic oxidation in a solution containing Ca and P compounds. Results show that the anodic film exhibited a two-layer structure: a pore-containing amorphous titanium oxide layer dispersed with nano-sized crystallites formed prior to sparking, and a porous overlay dotted with craters formed after sparking. Ca and P were predominantly incorporated in the porous overlay, in which the amorphous region contained more Ca and P than the crystalline region regardless of the anodizing voltages. Moreover, the ratio of amorphous to crystalline regions in the porous overlay changed insignificantly with anodizing voltage. Increasing anodizing voltage enhanced the incorporation of Ca and P in the anodic film, but deteriorated the adhesion of the anodic film to the substrate. This deterioration was related to two inherent adhesive weaknesses: the aligned pores in the titanium oxide layer and the craters in the major overlay, signifying that a new anodic oxidation process that can produce high Ca- and P-containing oxide film at relatively-low anodizing voltages, i.e. approximately 200 V, is a necessity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.