Abstract

Nitric oxide reductase cytochrome P450nor catalyzes an unusual reaction, direct electron transfer from NAD(P)H to bound heme. Here, we succeeded in determining the crystal structure of P450nor in a complex with an NADH analogue, nicotinic acid adenine dinucleotide, which provides conclusive evidence for the mechanism of the unprecedented electron transfer. Comparison of the structure with those of dinucleotide-free forms revealed a global conformational change accompanied by intriguing local movements caused by the binding of the pyridine nucleotide. Arg64 and Arg174 fix the pyrophosphate moiety upon the dinucleotide binding. Stereo-selective hydride transfer from NADH to NO-bound heme was suggested from the structure, the nicotinic acid ring being fixed near the heme by the conserved Thr residue in the I-helix and the upward-shifted propionate side-chain of the heme. A proton channel near the NADH channel is formed upon the dinucleotide binding, which should direct continuous transfer of the hydride and proton. A salt-bridge network (Glu71-Arg64-Asp88) was shown to be crucial for a high catalytic turnover.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.