Abstract

A unique fiber-reinforced polymer (FRP)–aluminum spatial truss structure with upper I-type, transverse beam braces was developed for deployable bridging, yielding the operational advantages of bestraddled erection bridges. Experimental testing and numerical simulation were performed to evaluate the torsional rigidity of a fabricated cantilever, full-scale experimental structure. The predictions obtained based on a computational finite element model were strongly consistent with the experimental results. Moreover, a numerical decomposition and reconstruction procedure was employed to understand the load-bearing mechanism of the structure. The results demonstrated that the improved transverse braces possessed adequate capacity for providing sufficient rigidity and lateral stability to the complete twin-treadway structure under torsion. The torsional center of the improved structure was located at the axis of symmetry of the twin-treadway bridge deck. The representative torsional rigidity of the twin-treadway module was approximately 87.5 kN·m2/degree. Compared to the original construction, the improved structure exhibited only minor discrepancies regarding the torsional rigidity, and consistent characteristics in terms of the load-bearing mechanism. The torsional rigidity of the improved twin-treadway structure was primarily generated by the vertical bending rigidities of its two parallel single treadways through the rigid transverse braces. This significant finding specifically pertains to the unique twin-treadway hybrid bridge. The results presented in this work are expected to provide valuable insights, which could, in turn, lead to further the development of similar lightweight structural systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call