Abstract
Iridium(III) complexes are particularly noted for their excellent potentials in fabrication of blue organic light-emitting diodes (OLEDs), but the severe efficiency roll-off largely hampered their practical applications. To reveal the underlying characteristics, three Ir(III) complexes, namely f-ct5c, f-ct5d, and f-ct11, bearing imidazo[4,5-b]pyrazin-2-ylidene cyclometalates are prepared and characterized in detail. Both f-ct5c and f-ct5d (also their mixture f-ct5mix) gave intensive blue emissions peaking at ≈465nm with short radiative lifetimes of 1.76 and 2.45µs respectively, in degassed toluene. Alternatively, f-ct11 with two 4-tert-butylphenyl substituents on each imidazo[4,5-b]pyrazin-2-ylidene entity, possessed a bluish-green emission (508nm) together with an extended radiative lifetime of 34.3µs in the dispersed PMMA matrix. Consequently, the resulting solution-processed OLED with f-ct11 delivered a maximum external quantum efficiency (EQEmax ) of 6.5% with serious efficiency roll-offs. In contrast, f-ct5mix based device achieved a high EQEmax of 27.2% and the EQE maintained at 23.0% of 1000cdm-2 . Furthermore, the hyper-OLEDs with f-ct5mix as the sensitizer and v-DABNA as the terminal emitter afford narrowed emission with a considerably high EQEmax exceeding 32%, affirming the potential of f-ct5mix to serve as both the emitter and sensitizer in OLEDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.