Abstract

The recently characterized Limosilactobacillus reuteri N1 GtfB (LrN1 GtfB) from glycoside hydrolase family 70 is a novel 4,6-α-glucanotransferase acting on starch/maltooligosaccharides with high enzyme activity and soluble protein yield (in heterogenous system). In this study, the influence of the treatment by LrN1 GtfB on the fine structure and functional characteristics of three maize starches were furtherly investigated and elucidated. Due to the treatment of LrN1 GtfB, the starch molecules were transformed into reuterans containing linear and branched (α1 → 6) linkages with notably smaller molecular weight and shorter chain length. Moreover, the (α1 → 6) linkage ratios in the GtfB-modified high-amylose maize starch (GHMS)/normal maize starch (GNMS)/waxy maize starch (GWMS) increased by 18.3 %/12.6 %/9.0 % as compared to their corresponding controls. In vitro digestibility experiment revealed that the resistant starch content of GHMS, GNMS and GWMS increased by 16 %, 18 % and 25 % as compared to the starch substrates. Furthermore, the butyric acid yielded from GHMS, GNMS and GWMS in the in vitro fermentation experiments were 1.4, 1.5 and 1.4 times higher than those of commercial galactose oligosaccharides. These results indicated that the highly-branched short-clustered reuteran synthesized by LrN1 GtfB might serve as novel potential prebiotics, and provide insights for the synthesis of promising prebiotic dietary fiber from starch.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call