Abstract
C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK) are endogenous inhibitors constraining the activity of the oncogenic Src-family kinases (SFKs) in cells. Both kinases suppress SFKs by selectively phosphorylating their consensus C-terminal regulatory tyrosine. In addition to phosphorylation, CHK can suppress SFKs by a unique non-catalytic inhibitory mechanism that involves tight binding of CHK to SFKs to form stable complexes. In this review, we discuss how allosteric regulators, phosphorylation, and inter-domain interactions interplay to govern the activity of CSK and CHK and their ability to inhibit SFKs. In particular, based upon the published results of structural and biochemical analysis of CSK and CHK, we attempt to chart the allosteric networks in CSK and CHK that govern their catalysis and ability to inhibit SFKs. We also discuss how the published three-dimensional structure of CSK complexed with an SFK member sheds light on the structural basis of substrate recognition by protein kinases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.