Abstract
The structural, electronic, optical, and thermodynamic properties of hydrochlorinated Janus graphene (J-GN) have been studied using first-principle DFT calculations. The band structure and density of states have been discussed. The values of 16 parameters have been calculated for the most stable chair (C) structure of hydrochlorinated J-GN. Out of sixteen, 12 parameters such as static dielectric constant ε(0), refractive index n(0), birefringence Δn(0), threshold conductivity σ(ω), plasmon energy (ћωp), binding energy (Eb), cohesive energy (Ec), enthalpy (E), entropy (S), free energy (F), heat capacity (Cp), and Debye temperature (ΘD) have been calculated for the first time. The structural and electronic properties have also been studied at 0-GPa, 25-GPa, 35-GPa, 50-GPa, 90-GPa, 100-GPa, 150-GPa, 200-GPa, and 220-GPa external pressures. The hydrochlorinated J-GN shows the direct band gap behavior up to 35GPa and becomes indirect band gap after 35GPa. Further, it shows a stable structure up to 90GPa and becomes unstable at 100-GPa external pressure. The calculated values of all parameters agree well with the available reported values of some parameters at 0GPa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.