Abstract
The purpose of this work is to provide an in-depth interpretation of the optical and electronic properties of a series of phosphole derivatives, including 2,5-diphenylthiooxophosphole (2a), 2-phenyl-5-biphenylthiooxophosphole (3a), 2-phenyl-5-stilbenylthiooxophosphole (4a), 2,5-dithienylthiooxophosphole (2b), 2-thienyl-5-biphenylthiooxophosphole (3b), 2-thienyl-5-stilbenylthiooxophosphole (4b), and dibenzophosphole 1. These thiooxophospholes show great potential for application in OLEDs as efficient red emitters due to the tuning of the optical and electronic properties by the use of various substituents at the 2,5-positions of the phosphole ring. The geometric and electronic structures of the oligomers in the ground state were investigated using density functional theory (DFT) and the ab initio HF, whereas the lowest singlet excited states were optimized with ab initio CIS. To assign the absorption and emission peaks observed in the experiment, we computed the energies of the lowest singlet excited states with time-dependent DFT (TD-DFT). All DFT calculations were performed using the B3LYP functional and the 6-31G (d) basis set. The results show that the HOMOs, LUMOs, energy gaps, ionization potentials, and electron affinities for the phosphole derivatives are significantly affected by varying the phosphole ring substituents at the 2,5-positions, which favor the hole and electron injection into OLEDs. The absorption and emission spectra exhibit red shifts to some extent [the absorption spectra: 339.63 (1)<358.65 (2a)<373.77 (3a)<443.89 nm (4a) and 403.03 (3b)<449.11 (2b)<460.19 nm (4b); the emission spectra: 418.42 (1)<513.62 (2a)<556.51 (3a)<642.59 nm (4a) and 568.31 (2b)<631.11 (3b)<647.35 nm (4b)] and the Stokes shifts are unexpectedly large ranging from 78 to 228 nm resulting from a more planar conformation of the excited state for the phosphole derivatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.