Abstract

A first-principles study has been performed to evaluate the structural, electronic, and magnetic properties of Zn(12)O(12) clusters doped with one or two Mn atoms. The substitutional, exohedral, and endohedral dopings are taken into account. For the monodoped clusters, the substitutional isomer is most energetically favorable, and an exohedral isomer may appear as a low-lying metastable state. All isomers present 5 mu(B) magnetic moment that is mainly contributed by the Mn-3d component. For the bidoped clusters, the antiferromagnetic state is degenerate with the ferromagnetic state at larger Mn-Mn distance (>5 A), while it is more energetically favorable at smaller Mn-Mn distance. Thus, the cohesion of bidoped isomer is sensitive to the magnetic coupling or chemical bonding. The endohedral bidoped isomer is found to be a stable local minimum, and the direct Mn-Mn interaction causes the reduction of local magnetic moment of Mn to about 4 mu(B).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call