Abstract
AbstractStructural, electronic and magnetic properties of transition metal TM (TM = Fe, Co and Ni) atomic chains wrapped in single walled LiF armchair nanotubes have been investigated by the first-principles calculations in the framework of the density functional theory. The generalized gradient approximation (GGA) with Hubbard repulsion potential and without Hubbard repulsion was employed to describe the exchange-correlation potential. It is found that all these TM chains @LiFNTs systems have negative formation energy so they are stable and exothermic. Total density of states and partial densities of states analyses show that the spin polarization and the magnetic moment of TM chains @LiFNTs(n,n) systems come mostly from the TM atom chains. All these nanocomposites are ferromagnetic (FM) and spin splitting between spin up and down is observed. The high magnetic moment and spin polarization of the TM chains @LiFNT(n,n) systems show that they can be used as magnetic nanostructures possessing potential current and future applications in permanent magnetism, magnetic recording, and spintronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.