Abstract

Structural, electronic, and magnetic behaviors of 5d transition metal (TM) atom substituted divacancy (DV) graphene are investigated using first-principles calculations. Different 5d TM atoms (Hf, Ta, W, Re, Os, Ir, and Pt) are embedded in graphene, these impurity atoms replace 2 carbon atoms in the graphene sheet. It is revealed that the charge transfer occurs from 5d TM atoms to the graphene layer. Hf, Ta, and W substituted graphene structures exhibit a finite band gap at high symmetric K-point in their spin up and spin down channels with 0.783 , 1.65 , and 1.78 magnetic moments, respectively. Ir and Pt substituted graphene structures display indirect band gap semiconductor behavior. Interestingly, Os substituted graphene shows direct band gap semiconductor behavior having a band gap of approximately 0.4 eV in their spin up channel with 1.5 magnetic moment. Through density of states (DOS) analysis, we can predict that d orbitals of 5d TM atoms could be responsible for introducing ferromagnetism in the graphene layer. We believe that our obtained results provide a new route for potential applications of dilute magnetic semiconductors and half-metals in spintronic devices by employing 5d transition metal atom-doped graphene complexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call